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The vegetable production chain 
has high economic and social 

importance worldwide, contributing to 
thousands of direct and indirect jobs in 
the sector, in addition to being in the 
main meals worldwide. In the past two 
decades, world vegetable production 
has increased approximately 60% 
compared to 1990 (Parajuli et al., 2019) 
The increase in demand is basically due 
to the benefits that the consumption 
of vegetables brings to human health, 
mainly because they are a potential 
source of phenolic acids, vitamins, and 
minerals (Rashmi & Negi, 2020) being 

suggested by nutritionists and doctors.
Due to the increase in vegetable 

consumption worldwide, research 
needs to be constantly updated to 
improve agricultural and production 
practices and quality. Thus, producers 
start to produce more and with greater 
sustainability, while placing quality 
vegetables on the market for consumers. 
These studies and researches require 
that the results obtained be of high 
experimental precision (Lúcio & Sari, 
2017).

In research with vegetables, 
variability between plants is a problem, 

especially in crops with characteristics of 
multiple harvests, such as strawberries, 
cucumbers, tomatoes, etc. (Cargnelutti 
Filho et al., 2004; Lúcio & Sari, 
2017). This situation occurs due to 
the uneven maturation of the fruits 
due to physiological characteristics 
and the growth habit. This means that 
the researcher needs to harvest the 
staggered production and, in some of 
these harvests, the plant may not have 
fruit or present fruit not suitable for 
harvest (Cargnelutti Filho et al., 2004; 
Lúcio & Benz, 2017). The immediate 
consequence of this situation is the 
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ABSTRACT
Biologically based growth models can be an alternative in 

identifying the productive response of multiple harvest vegetables. 
By interpreting the estimates of the parameters of the models, it is 
possible to estimate the total production, the rate of fruit production, 
and the moment when the crop reaches its maximum production 
potential. Besides, by estimating confidence intervals, these responses 
can be compared between genotypes or between different treatments. 
Therefore, the purpose of this manuscript is to present a literature 
review, and a detailed step-by-step, to interpreting the evolution of 
the production cycle of vegetables with multiple harvests crops based 
on non-linear regression. All the requirements that must be met in 
this type of analysis were presented in detail based on non-linear 
regression, providing the necessary steps for this type of analysis in 
details. Demonstration is given using data from strawberry cultivation 
along with the associated R scripts and interpretation of analysis 
output in material supplemental. This approach can allow for more 
relevant inferences than standard means analyses through better 
examination and modeling of the underlying biological processes.

Keywords: horticulture, logistic model, regression models, non-
linear model, precocity, production.

RESUMO
Uma abordagem para avaliações de experimentos para 

culturas de múltiplas colheitas baseado em regressão não linear

Modelos de crescimento de base biológica podem ser uma 
alternativa na identificação da resposta produtiva de hortaliças de 
múltiplas colheitas. Ao interpretar as estimativas dos parâmetros dos 
modelos, é possível estimar a produção total, a taxa de produção de 
frutos e o momento em que a cultura atinge seu potencial máximo 
de produção. Além disso, estimando intervalos de confiança, essas 
respostas podem ser comparadas entre genótipos ou entre diferentes 
tratamentos. Portanto, o objetivo do manuscrito foi apresentar uma 
revisão de literatura em um passo a passo para análise e interpretação 
do ciclo de produção de hortaliças de múltiplas colheitas, com base 
em regressão não linear. Todos os requisitos que devem ser atendidos 
neste tipo de análise foram apresentados detalhadamente, fornecendo 
o passo a passo necessário para análises de regressão não linear. A 
demonstração é realizada usando dados do cultivo de morango junto 
com os scripts R associados e a interpretação da saída da análise em 
um material suplementar. Esta abordagem pode permitir inferências 
mais relevantes do que análises tradicionais realizadas, através de um 
melhor exame e modelagem dos processos biológicos subjacentes.

Palavras-chave: horticultura, modelo logístico, modelos de 
regressão, modelo não linear, precocidade, produção.
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presence of zero values causing the 
database to be over dispersed (Carpes 
et al., 2010; Lucio et al., 2016; Sari et 
al., 2019b).

Several vegetables are harvested 
during the production cycle. Multiple 
harvests can be considered as repeated 
measures over time, as the same plants 
have their production measured with 
each new harvest (Lúcio et al., 2015). 
Strategy to minimize the effects that 
this situation causes, by accumulating 
the variables measured in each plant, 
allowing the application of nonlinear 
regression analysis techniques to the 
estimated values for each variable was 
by Lúcio et al. (2015) presented.

Among nonlinear regressions, 
bio-based growth models can be an 
alternative in identifying the productive 
response of multi-crop vegetables 
(Mischan et al., 2011; Paine et al., 
2012; Sari et al., 2018). By interpreting 
the estimates of the parameters of the 
models, it is possible to estimate the total 
production, the rate of fruit production, 
and the moment when the crop reaches 
its maximum production potential. Also, 
using confidence interval estimates, it 
is possible to compare these estimates 
between genotypes or between different 
experimental treatments (Lucio et al., 
2016; Sari et al., 2018; Diel et al., 
2020a).

The use of nonlinear models for the 
evaluation of vegetables from multiple 
harvests presents advantages over 
the evaluation of experiments using 
ANOVA and complementary tests of 
means or linear regressions (Sari et al., 
2019b; Diel et al., 2020a, b). Nonlinear 
models allow for the interpretation 
of more robust results that would not 
be possible with other more trivial 
statistical tests such as, for example, 
multiple comparisons test between 
treatment means.

The definition of precocity and the 
rate of fruit production are examples of 
interpretations that are important when 
it comes to vegetables (Diel et al., 2017; 
Sari et al., 2018). Their definitions are 
not yet well understood in the field of 
horticulture and nonlinear models allow 
them to be defined based on the partial 
derivatives of the regression model used 
(Sari et al., 2018).

Thus, the purpose of this manuscript 
is to present a literature review, 
and a detailed step-by-step, and an 
interpretation of the evolution of the 
production cycle of vegetables with 
multiple harvests crops based on a 
nonlinear regression by the logistic 
model, facilitating its use.

How to organize the data to model 
production?

The data used in the example are 
from an experiment conducted in 
a randomized block design, with a 
strawberry cultivar, and four fertilization 
treatments (organomineral, chemical, 
mixed organomineral + chemical and 
peat substrate with mixed fertilization), 
T1, T2, T3 and T4 respectively, in 
four repetitions and the experimental 
unit consisting of eight plants. After 
the fruits were red in color, they were 
harvested every seven days, totaling 
seven harvests. The variable evaluated 
in this example is the mass of fruits per 
plant (g plant-1).

In the following example, the 
adjustment of the model will be for 
the fruit mass variable (g) as a function 
of the DAT. The fruit mass must be 
accumulated in each harvest (from the 
first to the last) H1, H1+H2, H1+H2+H3, 
H1+……+H7, in four repetitions, for 
each of the experimental treatments 
(supplemental material: available 
at www.horticulturabrasileira.com.
br). The adjustment of the non-linear 
regression model can be performed by 
means of the repetitions of treatments 
or for each of the repetitions, in case 
of individual assessment of each plant 
that makes up the plot. The decision as 
to whether the adjustment will be made 
for the average of repetitions or each 
repetition rests with the researcher.

Nonlinear regression models
Nonlinear models are applied in 

various areas of knowledge to describe 
the relationship between different 
variables, these depend on the research 
area, the specific problem and the type 
of growth that will be modeled . Many 
biological scientific processes can be 
represented by nonlinear functions, such 
as the growth of animals and plants, 
which are faster in the initial phase and 

decrease the speed of growth tending to 
stability over time (Paine et al., 2012; 
Mischan & Pinho, 2014).

Nonlinear regression models, when 
they present parameters that can be 
interpreted biologically, can be more 
suitable than the use of linear models, 
as can they facilitate the understanding 
related to growth, mainly if they are 
based on parameters that allow biological 
interpretation, and plant growth has 
a nonlinear behavior (Mischan et al., 
2011; Paine et al., 2012).

The assessment  of the quality of fit 
of a nonlinear model for growth data 
must take into consideration out by the 
measures of intrinsic and parametric 
non-linearity (Bates & Watts, 1988; Sari 
et al., 2018, 2019b) along with statistics 
Akaike Information Criteria (AIC), 
Bayesian Information Criterion (BIC) 
and the coefficient of determination 
(R2). Non-linearity should be minimized 
in the most appropriate model (Beale, 
1960), the non-use of this measure and 
the selection of models only for the AIC 
or BIC is worrying, since interpretations 
and recommendations may be being 
made based on highly biased parameters 
(Sari et al., 2018). Sari et al. (2019b ) 
show that AIC, BIC and R2 do not assess 
parameter bias and can select models 
that do not describe biological growth 
correctly.

Bates & Watts (1988) defined two 
measures of nonlinearity: intrinsic 
nonlinearity (cl) and parametric non-
linearity (cθ). The cl is independent of the 
parameterization chosen for the adjusted 
model and does not change its value, cθ 
is dependent on the parameterization 
of the chosen model and can change 
the value from one parameterization 
to another. cl values are desired around 
0.3 while for cθ the values must be less 
than 1, and when above it means that 
the model has high non-linearity (Bates 
& Watts, 1988; Mazucheli & Achcar, 
2002; Seber & Wild, 2003; Fernandes 
et al., 2015). The closer to the linear 
the model, the convergence in the 
estimation of the parameters is fast and 
reliable (Ratkowsky, 1983) .

Parameterizations of the logistic 
and Gompertz  models  and two 
parameterizations of the von Bertalanffy 
model were tested for strawberry 
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production, in order to select the best 
parameterization that would estimate 
non-biased parameters (Box 1). 
Each parameterization within each 
model presented different results of 
parametric nonlinearity, and within the 
logistic and Gompertz models it had 
parameterization with low non-linearity 
and also parameterization with high 
non-linearity; for both parameterizations 
of the von Bertalanffy model used, 
the non-linearity was high, estimating 
biased parameters and preventing its 
use to model strawberry production 

(Diel et al., 2019). In many cases, the 
use of incorrect parameterization of 
nonlinear models can cause errors in the 
selection of the best model and in the 
interpretation of parameters (Fernandes 
et al., 2015).

Several authors have been working 
with nonlinear models in the study of 
growth curves, in the most diverse areas, 
studies with Italian zucchini, peppers 
and cherry tomatoes can be cited (Lúcio 
et al., 2015, 2016), cucumber (Neto et 
al., 2013), strawberry (Diel et al., 2019, 
2020b ), tomato (Sari et al., 2019a, b ), 
eggplant (Sari et al., 2018), and biquinho 
pepper (Diel et al., 2020a). Among the 
nonlinear functions, we can mention the 
logistic models, by von Bertalanffy and 
the Gompertz model, which are widely 
used in agricultural studies.

The logistic growth model is the 
most suitable for the culture of multiple 
harvests and Sari et al. (2018) determined 
and interpreted the critical points of 

a model and their interpretations. 
Diel et al. (2019) adjusted several 
parameterizations of the logistical, von 
Bertalanffy and Gompertz models and 
concluded that the logistic model is the 
most appropriate as it presents unbiased 
results. Similarly, Sari et al. (2019a, b) 
determined the logistic model as the 
best model for characterizing tomato 
production.

Some nonlinear models
The logistic model can be used to 

represent data in which the initial growth 
is exponential and after the inflection 
point is asymptotic (Mischan & Pinho, 
2014). Maia et al. (2009) used nonlinear 
models to describe growth curves in 
banana trees, and the logistic model 
showed better fit quality. Prado et al. 
(2013) concluded that the logistic model 
was the most adequate to describe the 
growth, in diameter, longitudinal and 
transversal, of green dwarf coconut 
fruits. Lúcio et al. (2015) concluded that 
the logistic model was the most adequate 
to describe the growth, in diameter, 
longitudinal and transversal, of green 
dwarf coconut fruits.

Von Bertalanffy’s model was derived 
from a study model called allometric 
relationships of organisms, but it has 
also been used in studies of growth in the 
plant environment (Mischan & Pinho, 
2014). Lúcio et al. (2016) used nonlinear 
models to estimate the production of 
green beans and concluded that in 
relation to the quality of the adjustments 

made, the logistic and von Bertalanffy 
models presented very similar estimates 
of quality indicators; the same authors 
observed that the von Bertalanffy 
model always showed higher values 
of β1 (asymptote) and lower values of 
β3 (production rate) when compared 
to the logistic model. When using AIC 
and BIC as measures of fit quality for 
data from multiple harvests, one can 
mistakenly select the von Bertalanffy 
model as appropriate. However, as 
seen in Diel et al. (2019), this model 
had the lowest AIC values, high non-
linearity values and overestimated 
parameter estimates, indicating its poor 
performance in describing strawberry 
production data. Likewise, this model 
is not suitable for modeling growth of 
multi-crop vegetables (Sari et al., 2018, 
2019a, b).

The Gompertz model has initial 
exponential growth and then asymptotic 

(Mischan & Pinho, 2014). This model 
is useful in biological studies, it does 
not have a minimum or a maximum, 
but it has an inflection point, growing 
until it reaches the maximum growth 
rate at its inflection point, then there is 
a decrease in growth until it reaches an 
asymptotic value. The Gompertz model 
is more similar to the logistic model and, 
depending on the parameterization used, 
it presents a good quality of fit determined 
by the non-linearity measures. Diel et al. 
(2019) tested three parameterizations of 
the Gompertz model with low intrinsic 
and parametric nonlinearity. However, 

Box 1. Parameterization of logistic, Gompertz and von Bertalanffy models used to adjust mass and number of fruits in strawberry. Santa 
Maria, UFSM, 2020.

*Par= parameterizations; 1Yi = the dependent trait (accumulated number or weight of fruits per plant); Xi = accumulated thermal sum (STa), 
in degree days, elapsed time of transplant of seedlings to harvest (independent trait); β1 represents the horizontal asymptote, that is, the 
point of stabilization of plant growth; β2 is the parameter that indicates the distance (in relation to abscissa) between the initial value and 
the asymptotes; β3 is a parameter associated with the growth rate and represents random error.

AD Lúcio et al.
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this model overestimates the parameters 
in relation to the original values. Sari et 
al. (2019a)  did not select the Gompertz 
model because statistically this model 
presented biased parameters that could 
lead to a misinterpretation about the 
productive behavior of the tested 
culture.

The logistic model for fruit mass
The model used for the example 

(supplemental material) will be the 
logistics 

where Yi is the mean mass of fruits per 
plant (dependent variable); Xi is the 
accumulated thermal sum (TSa), in 
degree days, from the seedling transplant 
up to the i th harvest (independent 
variable); β1 is the asymptotic value, and 
its values represent the total production 
of treatments; β2 is a parameter that 
reflects the distance between the initial 
value (observation) and the asymptote; 
and β3 is the parameter associated with 
the growth rate. This model is already 
indicated in several studies as being 
the most suitable for multiple harvests 
crops, as in the strawberry (Diel et 
al., 2019, 2020b), tomato (Sari et al., 
2019b)  eggplant (Sari et al., 2018), and 
biquinho pepper (Diel et al., 2020a ).

The parameter estimates were 
obtained by using Ordinary Least 
Squares Method, using a Gauss-Newton 
algorithm (Bard, 1974). This procedure 
was performed using a ‘nls’ function in 
a R software. With the model chosen 
and fit, its models assumptions must 
be tested: normality, homogeneity, and 
independence of residues. Shapiro-
Wilk tests were used to test normality 
(Shapiro & Wilk, 1965), Breusch-Pagan 

(1979) for homogeneity, and Durbin-
Watson (1950) for the independence of 
errors. Compliance with the assumptions 
is fundamental to estimate precise 
confidence intervals for the parameters. 
According to the tests performed, 
most of the model’s assumptions were 
met. For T2 only, the assumption 
of independence of errors was not 
met (Table 1). Thus, the estimates of 
the model parameters can be biased. 
When the model’s assumptions are not 
fully met, confidence intervals for the 
parameters can be estimated through 
bootstrap resampling, which is an 
efficient technique to work around these 
problems (Ratkowski, 1983; Souza et 
al., 2010; Diel et al., 2019).

Another important measure when 
adjusting the nonlinear regression model 
is the determination of intrinsic and 
parametric nonlinearity measures. The 
intrinsic non-linearity does not depend 
on the parameterization of the model 
used, while the parametric is linked 
with the parameterization of the chosen 
model (Bates & Watts, 1988, 2007).

When the parametric nonlinearity 
is high, that is, greater than 1, it means 
that the adjusted parameterization used 
is not adequate, and can reproduce 
estimates that lead to errors in the 
interpretation of the results (Bates 
& Watts, 1988, 2007; Seber & Wild, 
2003; Zeviani et al., 2012). When this 
happens, the researcher must adjust 
another parameterization of the model. 
This can be seen in more detail at Diel 
et al. (2019) and Fernandes et al. (2015).

Non-linearity measures are very 
important to verify that the models have 
parameters close to being impartial. 
To evaluate these measures in the R 
software, use the function ‘rms.curv’ in 
package MASS. This function returns 

the parametric and intrinsic nonlinearity 
measures proposed by Bates & Watts 
(1988). The lower values of these 
measures indicate that the parameters 
are close to being impartial.

In the example shown (supplementary 
material) it is noticed that the results of 
the intrinsic and parametric nonlinearity 
measures agree, for the T1, T2, and 
T3 treatments, presenting a good fit, 
because they have values less than 
0.3 and 1, respectively (Table 1). This 
result indicates that the model and 
parameterization that are being adjusted 
can be used to interpret the mass of 
strawberry fruits according to the days 
after transplantation (DAT). However, 
for T4 the parametric nonlinearity 
was above 1, indicating that this 
parameterization may cause biased 
parameters in this treatment, and, in this 
case, another parameterization should be 
adjusted (Table 1).

Critical points of the model
In addition to the adjusted β 

parameters, it is also possible to adjust 
the critical points of the function (Table 
2). These are estimated by equalizing 
the partial derivatives of the function 
to zero, according to the methodology 
described in Mischan et al. (2011) and 
Mischan & Pinho (2014): maximum 
acceleration point (MAP), inflection 
point (IP), maximum deceleration point 
(MDP) and asymptotic deceleration 
point (ADP). The concentration of 
production is defined by the difference 
between MDP and MAP. The CI of 
each critical point and the concentration 
of production are obtained by the 
difference between the quantiles 95th and 
2,5th, via bootstrap (Table 2).

The critical points of the function 
used to characterize the productive 
behavior of the crop are obtained 
using the derivatives in relation to time 
(in days or degrees Celsius day-1) as 
follows:

1-Inflection point (IP)= which 
represents the moment when the 
maximum fruit production rate occurs, 
and the time at which this point is reached 
means the precocity of production 
(Sari et al., 2018). It is calculated as 

(Mischan et al., 2011).

Table 1. p-values for the tests of normality, heteroscedasticity and error independence, 
estimates of non-linearity of the logistic model adjusted for fruit mass (g plant-1) strawberry. 
SW= Shapiro-Wilk; BP= Breusch-Pagan; DW= Durbin Watson; CI= intrinsic nonlinearity; 
Cθ= parametric nonlinearity. Santa Maria, UFSM, 2020.

Treatment SW BP DW CI Cθ

T1 0.46 0.41 0.43 0.11 0.42
T2 0.45 0.07 0.02 0.05 0.17
T3 0.32 0.11 0.96 0.19 0.62
T4 0.41 0.41 0.18 0.19 1.13

An approach for experiment evaluations for multiple harvests crops based on non-linear regression
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2-Maximum acceleration point 
(MAP) and maximum deceleration 
point (MDP)= The MAP indicates 
the slowness of the initial production 
and the degree of maturation of the 
plants at the beginning of the harvest. 
The later the MAP occurs, the smaller 
the increase in production in the first 
harvests, indicating a lower degree of 
fruit maturation. The MDP means the 
decrease in the rate of fruit production. 
In addition, the interval between MAP 
and MDP indicates the concentration 
of production (Sari et et al., 2018). It is 

calculated as
 

(Mischan 

et al., 2011).

3-Asymptotic deceleration point 
(ADP): indicates the time of harvest 
when the increases in production 
become insignificant (Sari et al., 2018, 

2019b). For the calculation 
 

(Mischan et al., 2011).

Estimation of confidence intervals 
by resampling

In addition to being useful in 
comparing treatment, estimating 
confidence intervals (CI) for the model 
parameters and their adjusted critical 
points, CIs can be useful when problems 
in relation to meeting the assumptions 
in nonlinear models (heterogeneity, 
normality and independence of the 
errors), the estimation bootstrap 
technique is an alternative to the 
inferential process and also a diagnostic 
tool (Efron & Tibshirani, 1986; Souza, 
1998, Souza et al., 2010). The use of 
bootstrap for nonlinear models is the 
best way to analyze the distributional 
properties (Ratkowski, 1983). The 
use of IC by resampling increases the 

reliability of the results in addition 
to allowing comparisons between 
treatments to be made, as can be seen 
in Diel et al. (2020a).

The confidence intervals (CI) of 
the parameters are estimated using the 
function ‘nlsBoot’. The CI is obtained 
by the difference between the quantiles 
95th and 2.5th, using the values of 
the previously adjusted model (see 
supplemental material available at www.
horticulturabrasileira.com.br). To plot 
the results on the graph, use the function 
‘ggplot’ .The output of this program 
(supplementary material) is presented 
with the graph below where it is possible 
to make comparisons between the 
estimates obtained for each of the 
experimental treatments evaluated.

Interpreting the confidence 
intervals of the model parameters 
and their critical points

The interpretation of the confidence 
intervals is performed for each treatment, 
making comparisons between them. If 
one treatment does not differ significantly 
from another, the confidence intervals 
overlap. If the treatment intervals do not 
overlap, treatments can be statistically 
and significantly different.

For example, in the first interval 
graph, the T1 and T3 intervals overlap 
but do not overlap with T2 and T4 
(Figure 1). Therefore, T2 and T4 
are significantly different from other 
treatments. Likewise, the T2 and T4 
intervals do not overlap, indicating 
that these treatments are significantly 
different from each other.

The estimate of parameter β1 is 
interpreted as being the asymptote. In 
biological terms, it means the production 
that a given treatment reached during 
the crop production cycle (Mischan et 

al., 2011). Thus, the most productive 
treatment, in this example, was T2, 
reaching about 280 grams per plant and 
was significantly superior to the other 
treatments, followed by T4 (Figure 1, 
Table 2). The treatments T3 and T1 
did not differ from each other (this 
interpretation is because the interval 
of one does not overlap the average of 
the other).

The parameter estimate β2 previously 
was defined as without biological 
interpretation because this is the 
parameter that reflects the average of 
the distance between the initial value 
and the asymptote. However, Diel et al. 
(2019) and Sari et al. (2018) presented 
the β2 as a measure of productive 
precocity, that is, how soon a given 
treatment produced in relation to the 
others. Treatments with lower values 
of the parameter β2, indicate fruit 
maturation at the beginning of the 
harvest, that is, greater fruiting at the 
beginning of the production cycle. In 
the example shown here, all treatments 
showed significant differences from 
each other, with treatment T4 being 
the earliest, while T2 being the most 
delayed treatment (Figure 1). Note that 
even the T4 treatment, being the earliest, 
is not the most productive, and with this 
analysis increases the robustness, the 
basis of interpretation, and the technical 
recommendation to the producer. This 
way, he will be able to better plan his 
cultivation based on the results he 
intends with the volume of production, 
and with the advance offer of his product 
to the consumer market.

The parameter interpretation β3 in 
biological terms, represents the rate of 
fruit production (Mischan et al., 2011; 
Sari et al., 2018). Thus, the treatment 
with the lowest estimate of β3 will have 

Table 2. Parameters of the estimated logistic model for mass of strawberry (β1 represents the production, β2 represents the precocity of 
production and β3 represents the rate of fruit production) and its critical points (IP= inflection point; MAP= maximum acceleration point; 
MDP= maximum deceleration point; ADP= asymptotic deceleration point; concentration= MDP-MAP). Santa Maria, UFSM, 2020.

Treatment β1 β2 β3 MAP MDP ADP IP
Concen-
tration

T1 166.10 32.30 0.16 185.09 200.70 206.60 192.90 15.61
T2 281.90 38.50 0.19 189.00 202.30 207.30 195.70 13.30
T3 165.10 35.30 0.18 186.00 200.40 205.70 193.10 14.40
T4 177.80 25.20 0.13 182.90 203.10 2010.50 193.00 20.20

AD Lúcio et al.
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a higher production rate, that is, it will 
have remained a long time producing. 
On the contrary, that treatment with the 
highest estimate of β3 will have a lower 
production rate, because production 
occurred in a shorter period (Sari et 
al., 2018).

In the example shown here, the T4 
treatment showed a higher production 
rate, that is, despite the lower estimate 
of the parameter β2 show the previous 
production in this treatment, also 
reached the IP in less time, due to the 
lower estimate of β3 in the T4 treatment 
(Figure 1). The T2 treatment, for 
example, presented a lower production 
rate, that is, it remained less time 
producing, but it presented a delayed 
production about T4 (compared by 
β2) and it took longer to reach the IP 
(maximum production).

The critical point MAP (maximum 
acceleration point) indicates the moment 
when the exponential increase in 
production in treatments starts. The 
high value of MAP is related to slow 
increases in production at the beginning 
of the harvest, that is, the initial harvests 
produce few fruits and are associated 
with the degree of maturation of the 
plants when harvests begin (Sari et al., 
2018). In fact, in the example presented, 
what has already been identified with 
the estimates of β2 and β3, since the T2 
treatment presented the highest MAP 
estimate (Figure 1, Table 2), indicating 
that production was slower at the 
beginning of the harvest compared to 
T4, which was earlier and showed an 
initial increase in the earlier harvest 
(evidenced by the lower value of MAP).

The inflection point (IP) represents 
the time spent by the plants to reach 
maximum production and can confirm 
the precocity of a certain experimental 
treatment. When plants start production 
at the beginning of the production cycle 
and have a high production rate, this 
treatment will probably reach the IP in 
less time (treatments in full production). 
The sooner that moment arrives, the 
earlier the genotype or the productive 
stimulus provided by the experimental 
treatment is (Mischan et al., 2011; Sari 
et al., 2018).

In the example presented here, it is 
not that the T4 treatment reached the 

IP in a shorter period, but did not show 
significant differences with the T3 and 
T1 treatments, while the T2 treatment 
reached the IP in a long time (Figure 1). 

As the T2 treatment started production 
later (higher estimate of β2), it presented 
slow increments at the beginning of the 
harvests (higher estimate of MAP) and, 

Figure 1. Confidence intervals for the parameters and critical points of the nonlinear logistic 
model estimated via bootstrap. β1 = production; β2 = precocity of production; β3 = rate of 
fruit production; MAP= maximum acceleration point; IP= inflection point; MDP= maximum 
deceleration point; ADP= asymptotic deceleration point; Concentration= MDP-MAP, for the 
different treatments. Santa Maria, UFSM, 2020.

An approach for experiment evaluations for multiple harvests crops based on non-linear regression

Figure 2. The logistic model adjusted for fruit mass (g plant-1) as a function of the days after 
transplanting the seedlings (DAT) for four different experimental treatments. Santa Maria, 
UFSM, 2020.
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thus, it is evident that it would reach its 
maximum production in a longer time 
(higher estimate of IP).

The maximum deceleration point 
(MDP) indicates the end of the period of 
exponential growth in fruit production. 
The T3 and T1 treatments started 
to reduce their production before 
the T4 and T2 treatments (Figure 
1). This condition is reflected in the 
concentration of production, which is 
determined by the difference between 
MDP and MAP (Sari et al., 2018), the 
T4 treatment is the one that remained 
the longest in production, even though it 
was less productive than the T2 (higher 
estimate of β1).

The asymptotic deceleration point 
(ADP) shows how long the treatment 
has shown significant growth during 
harvests (Mischan et al., 2011; Sari et 
al., 2018). Significant differences were 
observed between some treatments. The 
T3 and T1 treatments are characterized 
by producing fruits for a shorter time 
and the increments in production are no 
longer significant (Figure 1), followed 
by the T2 treatment, while the T4 
decreases the increments in production 
over a longer period (evidenced by the 
greater estimate of ADP).

Model Critical Points Chart
A graph plotting the adjusted model 

(A), the inflection point (IP) (B), and 
all critical points, IP, MAP, MDP, 
and ADP (C) can be performed (see 
supplementary material), so that the 
performance of the evaluated treatments 
can be visualized graphically (Sari et al., 
2019b; Diel et al., 2020 b) 

The graphs show the productive 
response of each treatment. In this 
display example, the greatest production 
was shown by the T2 treatment (Figure 
2). It is also possible to identify the 
highest production at the beginning of 
the T4 treatment harvests, as discussed 
earlier.

By evaluating the graphs shown 
in Figure 3, it is possible to visualize 
the treatments that reached the IP in 
a shorter period. The earlier in the 
productive cycle this moment arrives, 
the earlier the genotype or the productive 
stimulus provided by the experimental 
treatment is. In the example presented 

β2), it presented slow increases at 
the beginning of the harvests (higher 
estimate of MAP) and thus reached 
the maximum of production later 
(higher estimate of IP). All the critical 
points are plotted and it is possible 
to visualize the productive response 

Figure 3. Inflection points estimated in the adjusted models in each experimental treatment. 
Santa Maria, UFSM, 2020.

Figure 4. Points of asymptotic deceleration (ADP), inflection (IP), maximum acceleration 
(MAP), and maximum deceleration (MDP), estimated in the models adjusted for each 
experimental assessment. Santa Maria, UFSM, 2020.

here, it is not that the T4 treatment 
reached the IP earlier (Figure 3), but 
has no significant differences with 
the T3 and T1 treatments, while the 
T2 treatment reached the IP later. As 
noted earlier, treatment T2 started 
production later (higher estimate of 

AD Lúcio et al.
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of each experimental treatment. The 
ones that have the biggest differences 
between them are T4 and T2 (Figure 4).

Final considerations
The application of the nonlinear 

regression analysis methodology with 
the adjustment of a logistic model was 
presented, allowing the researcher to 
explore, identify and interpret, in a more 
robust, complete, and adequate way, the 
entire evolution of the productive cycle 
of crops of multiple harvests.

With the application of this method 
of analysis, it is possible to proceed 
with comparisons of the estimates of 
the parameters and the critical points 
of the adjusted regression model, 
showing the differences presented by the 
experimental treatments. In this way, the 
breadth of the technical recommendation 
from the results obtained is increased.
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